3.9.6 \(\int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx\) [806]

3.9.6.1 Optimal result
3.9.6.2 Mathematica [A] (verified)
3.9.6.3 Rubi [A] (verified)
3.9.6.4 Maple [A] (verified)
3.9.6.5 Fricas [C] (verification not implemented)
3.9.6.6 Sympy [F]
3.9.6.7 Maxima [F]
3.9.6.8 Giac [F]
3.9.6.9 Mupad [B] (verification not implemented)

3.9.6.1 Optimal result

Integrand size = 23, antiderivative size = 68 \[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\frac {2 \left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

output
2*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin( 
1/2*d*x+1/2*c),2^(1/2))/d+4*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1 
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b^2*sin(d*x+c)/d/cos(d*x+c 
)^(1/2)
 
3.9.6.2 Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.91 \[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\frac {2 \left (\left (a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b \left (2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {b \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )\right )}{d} \]

input
Integrate[Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^2,x]
 
output
(2*((a^2 - b^2)*EllipticE[(c + d*x)/2, 2] + b*(2*a*EllipticF[(c + d*x)/2, 
2] + (b*Sin[c + d*x])/Sqrt[Cos[c + d*x]])))/d
 
3.9.6.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.90, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 4752, 3042, 4275, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \sec (c+d x))^2}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}}dx+2 a b \int \sqrt {\sec (c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a b \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {a^2+b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\left (a^2-b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\left (a^2-b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )\)

input
Int[Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^2,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(a^2 - b^2)*Sqrt[Cos[c + d*x]]*E 
llipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (4*a*b*Sqrt[Cos[c + d*x]] 
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*b^2*Sqrt[Sec[c + d*x 
]]*Sin[c + d*x])/d)
 

3.9.6.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.6.4 Maple [A] (verified)

Time = 8.26 (sec) , antiderivative size = 202, normalized size of antiderivative = 2.97

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{2}-4 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a b +2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a^{2}-2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b^{2}}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(202\)

input
int(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
2*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^2-2*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*a*b+(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/ 
2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2)/sin(1/ 
2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.9.6.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 178, normalized size of antiderivative = 2.62 \[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\frac {-2 i \, \sqrt {2} a b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 i \, \sqrt {2} a b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, b^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (i \, a^{2} - i \, b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (-i \, a^{2} + i \, b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d \cos \left (d x + c\right )} \]

input
integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 
output
(-2*I*sqrt(2)*a*b*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I 
*sin(d*x + c)) + 2*I*sqrt(2)*a*b*cos(d*x + c)*weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c)) + 2*b^2*sqrt(cos(d*x + c))*sin(d*x + c) + sq 
rt(2)*(I*a^2 - I*b^2)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInve 
rse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + sqrt(2)*(-I*a^2 + I*b^2)*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c))))/(d*cos(d*x + c))
 
3.9.6.6 Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

input
integrate(cos(d*x+c)**(1/2)*(a+b*sec(d*x+c))**2,x)
 
output
Integral((a + b*sec(c + d*x))**2*sqrt(cos(c + d*x)), x)
 
3.9.6.7 Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 
3.9.6.8 Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 
3.9.6.9 Mupad [B] (verification not implemented)

Time = 14.11 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.19 \[ \int \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^2 \, dx=\frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^2,x)
 
output
(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a*b*ellipticF(c/2 + (d*x)/2, 2) 
)/d + (2*b^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d* 
cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))